Credit: Science Focus

The future is approaching faster than you would imagine. These new technologies will alter the way we live, care for our bodies, and assist us in preventing a global catastrophe.

The present world is one where technology advances at an unstoppable rate. Sometimes it seems like there are new inventions and technology that will permanently alter our futures every single day. But it is simple to lose sight of the incredible ways in which the world is developing under the constant barrage of announcements about brand-new, enormous technology advancements and interesting devices.

For instance, there are artificial intelligence programmes that can create visuals from nothing more than a written prompt and write poems from scratch. There are robots that can read your thoughts, 3D-printed eyeballs, and new holograms.

This just touches the surface of what is available, thus Science Focus has put together a selection of the most fascinating emerging technologies, which are listed below.

Artificial neurons on silicon chips

Scientists have found a way to attach artificial neurons onto silicon chips, mimicking the neurons in our nervous system and copying their electrical properties.

“Until now neurons have been like black boxes, but we have managed to open the black box and peer inside,” said Professor Alain Nogaret, from the University of Bath, who led the project.

“Our work is paradigm-changing because it provides a robust method to reproduce the electrical properties of real neurons in minute detail.

“But it’s wider than that, because our neurons only need 140 nanowatts of power. That’s a billionth the power requirement of a microprocessor, which other attempts to make synthetic neurons have used.

Researchers hope their work could be used in medical implants to treat conditions such as heart failure and Alzheimer’s as it requires so little power.

Car batteries that charge in 10 minutes

Fast-charging of electric vehicles is seen as key to their take-up, so motorists can stop at a service station and fully charge their car in the time it takes to get a coffee and use the toilet – taking no longer than a conventional break.

But rapid charging of lithium-ion batteries can degrade the batteries, researchers at Penn State University in the US say. This is because the flow of lithium particles known as ions from one electrode to another to charge the unit and hold the energy ready for use does not happen smoothly with rapid charging at lower temperatures.

However, they have now found that if the batteries could heat to 60°C for just 10 minutes and then rapidly cool again to ambient temperatures, lithium spikes would not form and heat damage would be avoided.

The battery design they have come up with is self-heating, using a thin nickel foil which creates an electrical circuit that heats in less than 30 seconds to warm the inside of the battery. The rapid cooling that would be needed after the battery is charged would be done using the cooling system designed into the car.

Their study, published in the journal Joule, showed they could fully charge an electrical vehicle in 10 minutes.

Internet for everyone

We can’t seem to live without the internet (how else would you read sciencefocus.com?), but still only around half the world’s population is connected. There are many reasons for this, including economic and social reasons, but for some the internet just isn’t accessible because they have no connection.

Google is slowly trying to solve the problem using helium balloons to beam the internet to inaccessible areas, while Facebook has abandoned plans to do the same using drones, which means companies like Hiber are stealing a march. They have taken a different approach by launching their own network of shoebox-sized microsatellites into low Earth orbit, which wake up a modem plugged into your computer or device when it flies over and delivers your data.

Their satellites orbit the Earth 16 times a day and are already being used by organisations like The British Antarctic Survey to provide internet access to very extreme of our planet.

Sand batteries

Not every technology bettering our future has to be complicated, some are simple, yet extremely effective.

One of these kind of technologies has come from some Finnish engineers who have found a way to turn sand into a giant battery.

These engineers piled 100 tons of sand into a 4 x 7 metre steel container. All of this sand was then heated up using wind and solar energy.

This heat can then be distributed by a local energy company to provide warmth to buildings in nearby areas. Energy can be stored this way for long periods of time.

All of this occurs through a concept known as resistive heating. This is where a material is heated by the friction of electrical currents.

Sand and any other non-super conductor are warmed by the electricity passing through them generated heat than can be used for energy.

E-skin could help us hug long-distance friends

While modern technology allows us to communicate verbally and visually almost anywhere in the world, there is currently no reliable method of sharing the sense of touch across long distances. Now, a wireless soft e-skin developed by engineers at the City University of Hong Kong could one day make giving and receiving hugs over the internet a reality.

The e-skin is studded with flexible actuators that sense the wearer’s movements and convert them into electrical signals. These signals can then be sent to another e-skin system via Bluetooth, where the actuators convert them into mechanical vibrations that mimic the initial movements. The system could be used to allow friends and family to ‘feel’ each other over long distances, the researchers say.

Smelly VR

Researchers at the City University of Hong Kong (CityU) recently invented what they’re calling a ‘novel, wireless, skin-interfaced olfactory feedback system‘. In other words, VR attachments that let you smell stuff.

The smells are generated by the devices heating and melting odorous wax that releases adjustable concentrations of stink. There are two versions of this tech. One is ‘mounted’ on your upper lip for easy access to your nostrils, and the other is a facemask-like design with hundreds of different odour combinations.

The university said their new tech has a broad range of applications that includes online teaching and 4D movie watching. That’s right, in the future, you’ll not only be able to watch your favourite movies in VR, you’ll also be able to smell them. Now that’s immersion!

AI image-generation

As artificial intelligence continues to perform jobs just as well as humans, there is a new industry to add to the list – the world of art. Researchers at the company OpenAI have created a software that is able to create images from just worded prompts.

Type in ‘a dog wearing a cowboy hat singing in the rain’ and you’ll get a host of completely original images that fit that description. You can even choose what style of art your request will come back in. However, the technology isn’t perfected and still has issues, like when we gave it poor prompts on designing cartoon characters.

This technology known as Dall-E is now its second iteration and the team behind it plans to continue developing it further. In the future, we could see this technology used to create art exhibitions, for companies to get quick, original illustrations or of course, to revolutionise the way we create memes on the internet.

There is also technology known as Midjourney, a AI image generator that creates gothic masterpieces with a simple text prompt. We are truly living in the future.

Xenotransplantation

Inserting the heart of a pig into a human feels like a bad idea, and yet, this is one of the latest medical procedures that is seeing rapid progress.

Xenotransplantation – the procedure of transplanting, implementing or infusing a human with cells, tissues or organs from an animal source – has the potential to revolutionise surgery.

One of the most common procedures performed so far is the insertion of a pig’s heart into a human. This has now successfully happened twice. However, one of the patients was only alive for a few months, and the second is still being observed.

In these surgeries, the heart cannot be instantly put into a human, gene-editing needs to take place first. Certain genes need to be knocked out of the heart and human genes need to be added, mainly around immune acceptance and genes to prevent excessive growth of heart tissue.

Right now, these surgeries are risky and there is no certainty around success. However, in the near future, we could see xenotransplants happening on a regular basis, providing hearts or tissues from animals to humans in need of it.

To reach the Innovate Tech Show editorial team on your feedback, story ideas and pitches, contact us here.